
 

Supplementary Figure 1: Si Li-α x-ray source function as measured with HOPG crystal 

spectrometer and image plates. 

 

  



 

 

 

Supplementary Figure 2:  The principal Hugoniot of Deuterium (ρ0=0.17 g cm
-3

) for 

Sesame, QEOS and the DFT-MD results of Holst et al.  The Sesame and DFT-MD curves 

are used to establish limiting Hugoniot values in order to estimate uncertainty in 

compression resulting from uncertainty in equation of state. 

  



 

 

 

 

Supplementary Figure 3: Backscattering spectra and fits using two models for ionization 

potential depression (IPD). Solid curves represent the total scattering signal while dashed lines 

indicate contributions from bound-free and elastic scattering only.  (A)  Stewart-Pyatt IPD model 

for ionizations of Z=0.15 (red), 0.25 (green)  and 0.5 (yellow).  (B)  Ecker-Kröll results for 

Z=0.15 (red) and 0.25 (green).  8 eV more continuum lowering effectively results in a shift of the 

bound-free scattering feature toward the elastic peak. 

 

  



 

 

Supplementary Figure 4: Temperature dependence of x-ray scattering fits.  (A) Backscattering 

data fit with three temperatures at Z=0.15.  Very little change is seen for fits ranging from 

Te=0.15-0.5 eV.  (B)  Plasmon scattering data fit at Z=0.15 with curves corresponding to Te=0.1-

0.2 eV.  While the relative intensity of the plasmon feature drops with increasing temperature, 

the spectral position remains constant.   

 

 

  



 

 

 

 

 

 

Supplementary Figure 5: Ionic pair distribution functions gii(r) (solid) for several states along 

the Hugoniot curve together with their corresponding coordination number K(r) (dashed). The 

dotted line indicates the molecular peak at 0.741 Å. 

 

 

  



 

 

 

 

 

Supplementary Figure 6.  (A) View inside the simulation box at 1000 K and 0.4 g cm
-3

 with α 

= 0.0066. (B) View inside the simulation box at 4000 K and 0.6 g cm
-3

 with α= 0.427. 
 

  



 

 

 

Supplementary Figure 7:  Optical reflectivity in compressed D2 previously measured by 

Celliers et al. (green) compared with reflectivity inferred from fits to x-ray scattering data (blue).  

Also shown is optical reflectivity inferred from DFT-MD simulations using the Kubo-

Greenwood formalism (red). 



 

 

Supplementary Note 1: Comparison with Reflectivity Measurements 

The location of the transition to metal-like behavior has previously been inferred from 

measurements of optical reflectivity
1
.  However, because the optical properties of dense 

hydrogen are quite complex during transition to the conducting state, it is difficult to infer 

ionization directly from reflectivity values and make a comparison to the measurements 

presented in the main text.  In order to compare our results with these measurements, we instead 

used the Born-Mermin dielectric function corresponding to the best fit to the x-ray scattering 

spectrum and calculated the index of refraction of the plasma at the laser conditions used by 

Celliers et al.    This allowed us to estimate the reflectivity corresponding to the measured x-ray 

spectrum.  In addition, we have compared these results to reflectivities calculated within the 

Kubo-Greenwood formalism
2,3

 by postprocessing the DFT-MD simulations at the points where 

XRTS measurements were made.  The results are shown in Supplementary Figure 7, where the 

continuous line is an optical reflectivity measurement made in compressed D2 using an 808 nm 

laser probe, the blue points represent reflectivities inferred from the x-ray scattering fits and the 

simulations are shown in red.  The optical reflectivity and x-ray scattering results appear to be 

consistent when compared on this basis. 

  



 

 

Supplementary Methods:  

 

Experimental Configuration 

 

The experiments were performed at the Janus Laser Facility, at Lawrence Livermore National 

Laboratory.  The experimental configuration is illustrated in Figure 2 of the main text.  A copper 

target held a reservoir of liquid deuterium near 19 K with initial deuterium density of 

0=0.17±0.004 g cm
-3

.   A single laser beam drove a shock into the deuterium with intensities of 

~4×10
13

 W cm
-2

 at the target in 2-6 ns long pulses.  The beam used a phase plate to produce a 

round 600 μm diameter spot on target.  The forward scattering measurements were made on 

deuterium shock-driven by a frequency-doubled 2 ns long laser pulse producing a wavelength of 

527 nm at the target.  The backscattering measurements were made operating the same laser at 

the 1054 nm fundamental, leading to higher intensities on target.  These shots used pulses of up 

to 6 ns to sustain higher-pressure shocks in the target. 

A second 527 nm beam was propagated at 90° to the drive beam, incident on a Si3N4 foil with an 

intensity of 1×10
14

 W cm
-2

.  This beam pumped the Si Ly-α line at 2005 eV, producing a bright 

x-ray source of bandwidth δE/E=2×10
-3

, sufficiently narrow to observe small plasmon shifts at 

fractional ionizations
4
.  The probe pulse was delayed 10-20 ns after the rise of the drive beam, 

allowing the shock to traverse a distance of 350 μm to reach the center of the volume accessed 

by the x-ray diagnostic port.  Conversion efficiency of laser energy into the Ly-α line was 

measured to be 0.2%, producing approximately 4×10
12

 x-ray photons at the target, sufficient for 

accurate single-shot measurements.   

The x-rays were dispersed with Highly Ordered Pyrolytic Graphite (HOPG) crystal 

spectrometers, 24 x 70 mm curved with a radius of curvature (ROC) of 107 mm.  The 

spectrometers operated in von Hamos geometry
5
 collected and spectrally dispersed the scattered 

radiation onto Fuji BAS-TR025 image plates, resulting in a dispersion of 3.5 eV mm
-1

 and 4 eV 

instrument functions.  The image plates were scanned at a resolution of 50 μm.  The soft x-ray 

bremsstrahlung produced by the laser-target interaction was filtered by a 25 μm thick Be foil or a 

layer of aluminized plastic a few μm thick that was placed in front of the image plate.  Of the 

~4×10
12

  photons produced, a fraction of 7×10
-4

 photons were scattered on a typical shot, 

consistent with the electron densities ~4×10
22

 cm
-3

 measured at fractional ionizations.  

Supplementary Figure 1 shows the x-ray source function as measured with the HOPG and image 



 

 

plates. 

In dynamic x-ray scattering experiments, contributions from un-shocked material can 

contaminate the desired signal from the shocked sample.  In our case, we note that the x-ray 

aperture is sufficiently small to localize the measurement to a volume mostly constrained to the 

shock front.  This is further weighted by the higher scattering contribution from dense, hot 

material to confine the measurable signal to the shocked matter.  We performed null tests on 

undriven targets to verify that there was no significant contribution from the target or unshocked 

volume.  In addition, the plasmon data do not have the broadening or lower energy shifts we 

would expect from scattering from lower density hydrogen, and we are thus confident that our 

signal is collected from the compressed volume. 

The mixing of pusher material into the field of view of the spectrometer would also be an 

important failure mode.  However, we would expect this to be detectable as a spuriously large 

electron density and as a larger total photon signal at the detector.  Neither signature was evident 

in our data. 

Falk and coauthors have raised questions about combining VISAR measurements from a shock 

front with spatially integrated XRTS in similar experiments, particularly in the presence of 

gradients in plasma conditions
6
.  While this is an important point, we note that the Falk 

experiment was designed to maximize scattering signal by scattering from a large volume of the 

target with an x-ray source antiparallel to the drive beam and thus including significant 

contributions from coronal plasma and all other plasma conditions present.  We have attempted 

to control this with a narrower x-ray aperture.  The Falk geometry also necessitated a design that 

did not use a solid density pusher on the target surface.  As a result, Falk et al. report less 

uniform shock conditions than would otherwise be obtained, as well as measurable target 

preheat.  We have avoided this outcome with an experimental design that allows for the use of an 

Al pusher.  Significant variations in electron density would be expected to broaden the plasmon 

signal measurably and result in a less shifted spectral feature – something we do not detect in our 

data. 

 

 



 

 

Deuterium Equation of State 

The deuterium equation of state has generated a great deal of attention and controversy over the 

last two decades.  In particular, the EOS along the primary Hugoniot has been studied 

extensively, with a focus on the region of maximum compressibility between about 30-200 GPa
7
.  

The early and widely used Sesame tables
8
 predicted a relatively low compressibility (a “stiff” 

Hugoniot) while some laser experiments suggested a “softer” curve
9,10

.  Updates to the Sesame 

model
11

 and increasingly high resolution ab initio simulations
7
 have led to more recent 

theoretical results between these two extremes. 

Experiments at the Omega laser
12

 and the Sandia Z-machine
13

 have reported smaller differences 

in the measured Hugoniot.  At pressures near 45 GPa, Hicks and coauthors find approximately a 

12% difference in compression between the two experimental platforms, after correcting for 

differences in initial conditions and analysis.  The error bars in these measurements are of a 

similar order, due to the inherent challenges of impedance matching in low density targets.  The 

properties of quartz, typically used as an impedance matching standard in dynamic experiments, 

have also been shown to play an important role.  Re-analysis with an improved quartz standard 

shifts the high-pressure Omega data toward lower compression and closer agreement with the Z 

results
14

.   

For data analysis and hydrodynamic calculations, we choose the quotidian equation of state 

(QEOS)
15

 that yields compressions between the relatively stiff early Sesame curve
8
 and a DFT-

MD curve which is softer
16

.  At low pressures ~15 GPa where most of our measurements are 

taken, the variation between these extremes is generally less than 10% – much of the current 

attention is focused on data above about 30 GPa and compressions greater than 4×.  The three 

curves are plotted in Supplementary Figure 2 to show the relationship of the QEOS Hugoniot 

with these bounding curves.  The difference between the QEOS Hugoniot and each of these 

curves is taken as an estimate of EOS-related uncertainty in the compression data plotted in 

Figure 6 of the main text, where this uncertainty has been added to the error in the VISAR and 

hydrodynamic calculations.  We note that most of our data are taken at compressions of 3.2, 

where Supplementary Figure 2 suggests a range of pressure uncertainty from 13-19 GPa. 

 

 



 

 

Analysis of x-ray scattering spectra  

The recorded x-ray spectra were fit with a theoretical model that includes the spectral 

contributions of ions, free electrons and bound electrons.  The model is based on the Chihara 

formula, 

𝑆(𝑘, 𝜔) = |𝑓(𝑘) + 𝑞(𝑘)|2𝑆ii(𝑘, 𝜔) + 𝑍f𝑆ee(𝑘, 𝜔) + 𝑍b∫𝑑𝜔′𝑆ce(𝑘, 𝜔 − 𝜔′)𝑆S(𝑘, 𝜔′) 

This formula describes the scattering spectrum as a combination of elastic scattering (first term), 

inelastic scattering from delocalized electrons (second term) and inelastic scattering from weakly 

bound electrons, including bound-free transitions to the continuum.  Zf and Zb denote the number 

of delocalized (free) and weakly bound core electrons respectively. 

The first term accounts for density correlations of electrons that follow the ion motion, including 

core electrons (represented by the ion form factor f(k)) and the screening electrons (q(k)).  At the 

instrument resolutions obtained in our study, the ion-ion correlation function Sii(k,) can be 

approximated Sii(k,) = Sii(k)().  The static ion structure factor is calculated in the Debye-

Hückel approximation
17

.   

The second term describes the density correlations of free electrons.  This term is often 

calculated in the random phase approximation (RPA), which assumes weak inter-particle 

interactions.  Improvements have been introduced to account for strong coupling effects in dense 

matter in the form of the Born-Mermin approximation (BMA)
18

.  This approach introduces a 

dynamic collision frequency ν(ω) using an ansatz suggested by Mermin
19

.  The collision 

frequency is calculated in the Born approximation
20

.  Further improvements have been made by 

introducing local field corrections (LFC)
21

.  Together, this BMA-LFC approach was shown to 

greatly improve the description of plasmon dispersion in warm, dense matter
22

.  We use it in all 

of our analysis, although tests against RPA calculations show that the two models do not differ 

significantly at the density and temperature conditions explored in our study. 

The third term describes bound-bound and bound-free scattering processes through the term 

Sce(k,).  There has been much recent work to improve the theoretical description of this term
23-

25
, which introduces significant model-dependence into the inelastic spectrum.  In our case, we 

are primarily concerned with the treatment of ionization potential depression (IPD) which can 



 

 

introduce plasma-parameter-dependent energy shifts and changes in shape to the bound-free 

component of the spectrum.  In order to minimize the ambiguity of our fits, we compare 

calculations using two different models for IPD - the Stewart-Pyatt (SP)
26

 and Ecker-Kröll 

(EK)
27

 approaches.  The results are plotted in Supplementary Figure 3.   

In Supplementary Figure 3 (A), we show SP fits for ionizations of Z=0.15, 0.25 and 0.5 (solid 

lines) as well as dotted lines for those conditions representing only the bound-free and elastic 

scattering contributions.  All fits were calculated for Te=0.15 eV and ρ/ρ0=3.2.  Relative to the 

elastic scattering feature, the free-free scattering contribution grows much more rapidly with 

increasing ionization than the bound-free component.  While IPD models affect the overall shape 

of the inelastic feature, this weak-scaling of the bound-free component with density means it has 

only a limited effect on the electron density inferred from the measurement.  A best fit of Z=0.15 

is found. 

In Supplementary Figure 3 (B), we show EK fits for the same conditions and ionizations of 

Z=0.15 and 0.25.  Dotted lines again correspond to bound-free and elastic scattering.  In this case 

the peak of the bound-free feature is shifted toward E0 relative to the SP case, a result we 

attribute to the much larger calculated lowering of the continuum  in the case, ΔEEK=10.2 eV 

compared with  ΔESP=2.1 eV in the Stewart-Pyatt case.  Nevertheless, we find Z=0.15 fits the 

spectrum best.  The agreement in calculated density between these two cases gives us confidence 

that our inferred electron density is correct, notwithstanding the model-dependence of the bound-

free feature.   

We also tested the temperature dependence of the spectrum and found a very weak dependence 

in the intensity of the inelastic feature relative to the elastic.  This is illustrated in Supplementary 

Figure 4 (A), where fits are shown for Te=0.15, 0.25 and 0.5 eV at Z=0.15 and ρ/ρ0=3.2.  Because 

the scattering intensity is not a sensitive function of temperature, our stated Te=0.15 eV 

measurement is only a rough estimate, albeit one that is consistent with forward scattering.  

Consequently, Compton scattering is only sensitive to Z; uncertainties in Te do not affect the 

quoted values for Z. 

Supplementary Figure 4 (B) shows the plasmon scattering data from Figure 4 of the main text 

with fits corresponding to Z=0.15 and temperatures of Te=0.1, 0.15 and 0.2 eV.  In this case, it is 

found that the intensity of the elastic feature changes with temperature relative to the plasmon 



 

 

feature, but that the spectral location of the plasmon feature is temperature insensitive.  This is to 

be expected at such low temperatures, where the thermal correction to the plasmon dispersion 

relation is too small to play a role.  As a result, we are confident that the downshifted plasmon 

energy is a robust, first-principles measure of electron density. 

The static structure factor of dense plasmas, particularly at small k-values in forward scattering 

experiments, remains an important and challenging research problem
28

.  Our fits at Te=0.15 eV 

are presented only as rough estimates that are model dependent, and are somewhat lower than the 

DFT-MD results of order ~0.3 eV at this point on the Hugoniot.  However, the inferred 

ionization is insensitive to variations in temperature and consistent between the very different 

forward and backward scattering regimes. 

 

Hydrodynamic Simulations 

Radiation hydrodynamic simulations were performed using the package HYDRA
29

.  The 

simulations are three-temperature (electron, ion and radiative) under the assumption of local 

thermodynamical equilibrium. The equation of state is similar to QEOS
15

, with a Thomas-Fermi 

model for ionization and opacities. The laser absorption is modeled with ray tracing, the 

geometry is one-dimensional with a resolution of 0.25 µm. The equations for the multi-group 

radiation transport are solved in the diffusive limit, as is the thermal electron conduction, where a 

flux limiter of 0.05 is used.   

We modeled the uncertainty in calculating the final compression by performing simulations for 

20% deviations in laser intensity and taking bounding values from the relevant x-ray probe time.  

Although changes in laser drive conditions can cause significant deviations at early times, the 

shock decays to a similar set of plasma conditions at x-ray probe time.  We note that the 

calculated shock velocities are consistent with the analytical scaling for laser driven one-

dimensional shocks given in
 
Ref. 30. 

 

Simulation of Ionization and Dissociation 

We outline the theoretical background of fluid variational theory (FVT) and the framework of 

density functional theory molecular dynamics (DFT-MD). Both methods were used to estimate 



 

 

the dissociation degree α=ND/(ND+2ND2), with the number of deuterium atoms ND and deuterium 

molecules ND2 respectively, along the Hugoniot curve of deuterium, see
31

. The results for α are 

shown in Fig. 6 of the main text. 

The FVT is a free energy minimization scheme for a mixture of hydrogen atoms and molecules, 

evaluating the chemical reaction 𝐻2 ⇔ 𝐻 +𝐻 self-consistently (chemical models).  The free 

energy F of the system is calculated on the basis of the Gibbs-Bogolyubov inequality  𝐹 ≤ 𝐹0 +

〈𝛷 − 𝛷0〉0 that states that F is less or equal the sum of the free energies of a reference system F0 

(here a hard sphere system) and the mean value of the difference of two interaction potentials 

evaluated over the reference states. In our case the reference hard sphere potential Φ0 and 

effective two-particle potentials, namely the exponential-6 potentials Φ (see Ref. 32 for the 

molecules and Ref. 33 for the atoms) for the real system are used, see Ref. 34. 

The equation of state (EOS) and α are direct outputs of the FVT calculation. Since the underlying 

Hugoniot curve is based on DFT-MD calculations for deuterium, the FVT data have to be 

mapped to it.  Therefore we scaled the density of our FVT hydrogen EOS by a factor of 2, to 

adjust it to deuterium. We then extracted the FVT EOS points with the respective (FVT)-α 

according to the EOS points of the underlying DFT-MD Hugoniot curve.  

In contrast to FVT, the DFT-MD framework is based on a strictly physical picture. Bound states 

or other long-living correlations between the electrons and ions are not regarded as new species 

as in the chemical picture.  According to the Born-Oppenheimer approximation the treatment of 

the ions is classical in the MD and the properties of the electron system are evaluated on the 

quantum level using the DFT at finite temperatures
35

. 

For our simulations we use the VASP program package
36-38

. To calculate the Coulomb 

interactions between the electrons and ions more efficiently, projector-augmented wave 

potentials
39,40

 are used with a converged energy cutoff of 1200 eV.  

The forces that act on the ions are derived via the Hellmann-Feynman theorem at each MD step. 

This procedure is repeatedly performed in a cubic simulation box with periodic boundary 

conditions for several thousand MD steps of 0.2 fs to 1 fs duration so that the total simulation 

time amounts up to 8 ps. The ion temperature is controlled with a Nosé thermostat
41

. The most 

crucial approximation within the DFT is the choice of the exchange-correlation functional for 



 

 

which we use the one of Perdew, Burke, and Ernzerhof (PBE)
42

, a parametrization of the 

generalized gradient approximation (GGA). 

We ensure convergence of our simulation runs with respect to the energy cutoff for the plane 

wave basis set, the particle number and the k-point sets applied for the evaluation of the 

Brillouin zone.  In detail we used 256 atoms and the Baldereschi mean value point
43

. 

The dissociation degree for each EOS point along the Hugoniot curve is estimated via the 

coordination number K(r), a weighted integral over the pair correlation function gii(r) of the ions, 

see Ref. 13:  

𝐾(𝑟) =
𝑁 − 1

𝑉
∫ 4𝜋𝑟′

2
𝑟

0

𝑔ii(𝑟
′)𝑑𝑟′ 

N is the numer of simulated ions and V the volume of the simulation box.  Twice the value of 

K(r) at the molecule peak, indicated by the dotted line at 0.741Å in Supplementary Figure 5, is 

equal to the number of ions bound to a molecule: 2K(r)=2ND2/( 2ND2+ND).  Hence the relation 

between the coordination number and the dissociation degree is α = 1 - 2K(r). Also shown in 

Supplementary Figure 5 are gii(r) and K(r) for three EOS points along the Hugoniot curve. 

The simulation box at 1000 K and 0.4 g cm
-3

 is shown in Supplementary Figure 6 (A) with α= 

0.0066.  As is shown, all ions in the box are bound in molecules.  The single ions at the edge are 

due to the finite box.  The respective molecule partner is found in the next box.  A box 

visualizing a much higher dissociation degree of α=0.427 at 4000 K and 0.6 g cm
-3

 is shown in 

Supplementary Figure 6 (B).  Just about half of the ions are bound to molecules here, leading to a 

lower molecule peak and a lower coordination number, see Supplementary Figure 5. 
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